
To detect objects, we use the Raspberry
Pi (RPi) with the RPi camera due to its
high processing power and flexibility.
A dynamic priority system controlled by the Teensy
allocates the RPi’s computational resources efficiently.
Commonly used alternatives did not meet our standards:
the Pixy had too low resolution, while the OpenMV and
Jevois camera has less processing power than our RPi.

All our electronic components are connected together by PCBs designed in
Autodesk EAGLE and fabricated with JLCPCB. To accomodate for the
limited board space, the design was made extremely compact by utilising
SMD components rather than THT breakout boards as much as possible
due to the smaller footprint.

ElectronicsMechanical

We are a team of 3 students from Hwa
Chong Institution, Singapore. We have
been participating in RoboCup Soccer
Open since 2017. We take pride in
being the only school in Singapore
which does not have a robotics coach,
instead relying completely on
ourselves to learn, build and program
everything from the ground up.

About Us
Our greatest innovation this year is developing our Raspberry Pi camera system that
can track multiple objects at up to 90 FPS, with a client-side GUI that makes it easy
for debugging. We have upgraded our robot’s processing capabilities by having 3
STM32F1 processors on top of our main Teensy microcontroller, which allows for
much more efficient task parallelisation. We have also created our own 2D soccer
simulation software with Python for testing out new strategies. Most importantly, we
took the time to learn from various teams over the years and have adapted some of
their more effective ideas into our robot, such as having a double dribbler design as
well as fabricating the mirror from a lathed aluminium tube.

Abstract
For more details about our robot, please visit our website at
bozo.infocommsociety.com.
Stay updated with our team by following us on Instagram
@bozotics and subscribe to our YouTube Channel!

Contact

Website Instagram YouTube

Design Principles

Connection scheme

We decided to use UART as the
communication protocol between µC
as it is the most stable and easiest
to implement compared to other
protocols like SPI and I2C.

Component Cost
SGD

Layer 1
JMPBE3561 Motor ×4 $480

1040B Solenoid $5

VNH5019A Motor Driver ×4 $8

ALSPT19 Phototransistor ×40 $4

PMW3360 Mouse Sensor $10

Layer 2
Revolectrix 3S 3300mAh
40C Li-Po Battery

$20

XA2212 820KV BLDC 2 $20

Layer 3
Teensy 3.5 $50

STM32F103CBT6 3 $6

Adafruit NXP Precision IMU $25

Raspberry Pi 3B $45

Raspberry Pi Camera V1 $3

HC05 Bluetooth Module $5

Hobbywing ESC 2 $20

Layer 4
VL53L1X TOF 4 $30

WS2812B Neopixel ×16 $2

Others

Carbon Fiber $26

PCB 4 plates) $25

Assorted Parts $60

Total $850

Components List

IMU

We use the Adafruit
NXP precision IMU. It
is connected to an
ffffSTM32F103 µC which processes
data from the magnetometer,
accelerometer and gyroscope
using NXP’s sensor fusion
algorithms before sending the
robot’s bearing over to the Teensy.

Even Weight Distribution
The robot is roughly 180° rotationally symmetrical.
This ensures equal weight distribution on each
wheel, providing for more accurate motion.

Low Centre of Mass
All the heaviest components are placed on the
bottom layers. This reduces skidding issues and
allows for more consistent motion.

Modular Design
The robot has 6 independently assembled layers.

Drive System Dribbler

We use 4 JoinMax JMPBE3561
motors. It has very high speed
1700 RPM and torque (1.96 Nm).
Our omni-wheels are self-made,
mostly out of 3D printed parts. dd
There are 2 layers of 15
mini-rollers, each fitted
tightly with a nitrile rubber
O-ring and a short axle.
fffffThe axles are held in recesses
between the 3D printed layers,
allowing the rollers to spin freely.

Our dribbler is powered by an
820kV brushless motor with a 2.51
gear reduction. It is able to spin the
ball at over 2000 RPM.
ffOur rollers are coated with
silicone sealant, increasing
the friction on the ball. dd
The dribbler has a suspension
system too. It pivots upwards and
dddabsorbs the impact
of an incoming ball,
providing better ball
control.Mirror (Design)

We use a hyperbolic mirror to give
the robot a 360° FOV. The profile
was designed on CAD and renders
were used to tune its shape. Our
mirror can see the entire field from
any position, even on the
SuperTeam Bigfield!

Mirror (Fabrication)

The mirror was machined from an
aluminium tube with a CNC lathe,
followed by wet sanding and
polishing to a mirror finish.

Software

Normal render Bigfield render

Unpolished Wet sanding Final mirror

Actual camera view

Simulation

Microcontroller (µC

We chose a Teensy 3.5/3.6 as our
main µC because it has a fast
processing speed, small form factor,
extensive support on the Arduino
IDE, and is easy to reuse as it is on a
breakout board.

To prevent the Teensy from being
bogged down by low-level
processes, we use multiple
STM32F103 chips, allowing for more

In order to program these,
we use JLink OB
modules to flash
programs via
SWD.

tasks to run parallel.
We chose this due to its
extensive support in the
Arduino ecosystem and
low cost.

Object Detection

Programming the Raspberry Pi
Operating System

Most tutorials point towards Python
with the official picamera library.
However, we code in C which
fffffffff

We chose Arch Linux ARM since it
has a clean base with not much
preinstalled, allowing us to configure
the OS with only the programs we
require. This drastically decreased
boot time (12s) and latency. Looking
ahead, tools such as Buildroot can
be used to strip the OS down even
further and allow us to get a fully
embedded system.

Client-side GUI

We wanted to emulate the
plug-and-play ability of the Pixy or
OpenMV. Hence, we built similar
client-side interfaces using Qt and
sockets over an ethernet connection.
We also integrated SSH so that the
process of connecting and
transferring of files is automated.

Camera

We used RPi camera v1 over the newer v2, since it can
work at the full FOV while still achieving a high FPS.
To more accurately locate the ball, we manually tuned
saturation and exposure values to better capture the
color range of the orange ball - all done via the GUI.

We created a 2D simulation
with Python to allow us to
test our programs without
the actual robot. We are also
able to test out new
strategies that require more
complex information such as
the opponent’s robots’
positions. We intend to
develop a programmable API
for this so other teams can
use this software too!

vs

compiles into a binary. This overcame latency issues from
Python's interpreted nature, while enabling us to bypass
the Global Interpreter Lock and utilise true multithreading.
We did attempt to use alternative implementations such
as PyPy, however we faced many issues and bugs that
pushed us towards adopting C completely.

Localisation

We weight data from the TOF sensors, light sensors, mouse sensor, and camera,
based on their computed reliability. This goes through a sensor fusion algorithm to
approximate our location on the field, which aids our attack and defense strategy
while ensuring the robot stays within the field.

A strategy we are experimenting with is
“Tackling”, where one robot positions itself
between the ball and the opponent, thus
blocking the opponent’s access to the ball
and reducing the situation to a 1v1.

Screenshot of
simulation running

Example of “Tackling” situation

https://bozo.infocommsociety.com/
https://www.instagram.com/bozotics/
https://www.youtube.com/channel/UC_yUYNCAsSCAqj3rdIPPRXg

